Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy.
نویسندگان
چکیده
It has been predicted that application of a strong electric field perpendicular to the plane of bilayer graphene can induce a significant band gap. We have measured the optical conductivity of bilayer graphene with an efficient electrolyte top gate for a photon energy range of 0.2-0.7 eV. We see the emergence of new transitions as a band gap opens. A band gap approaching 200 meV is observed when an electric field approximately 1 V/nm is applied, inducing a carrier density of about 10(13) cm(-2)}. The magnitude of the band gap and the features observed in the infrared conductivity spectra are broadly compatible with calculations within a tight-binding model.
منابع مشابه
Observation of an electrically tunable band gap in trilayer graphene
A striking feature of bilayer graphene is the induction of a significant band gap in the electronic states by the application of a perpendicular electric field1–7. Thicker graphene layers are also highly attractive materials. The ability to produce a band gap in these systems is of great fundamental and practical interest. Both experimental8 and theoretical9–16 investigations of graphene trilay...
متن کاملWafer scale homogeneous bilayer graphene films by chemical vapor deposition.
The discovery of electric field induced band gap opening in bilayer graphene opens a new door for making semiconducting graphene without aggressive size scaling or using expensive substrates. However, bilayer graphene samples have been limited to μm(2) size scale thus far, and synthesis of wafer scale bilayer graphene poses a tremendous challenge. Here we report homogeneous bilayer graphene fil...
متن کاملGraphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
Graphene is considered to be a promising candidate for future nanoelectronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect transistors (FETs) cannot be turned off effectively due to the absence of a band gap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measur...
متن کاملField modulation in bilayer graphene band structure.
Using an external electric field, one can modulate the band gap of Bernal stacked bilayer graphene by breaking the A-[Formula: see text] symmetry. We analyze strain effects on the bilayer graphene using the extended Hückel theory and find that reduced interlayer distance results in higher band gap modulation, as expected. Furthermore, above about 2.5 Å interlayer distance, the band gap is direc...
متن کاملExtreme sensitivity of the electric-field-induced band gap to the electronic topological transition in sliding bilayer graphene
We have investigated the effect of electronic topological transition on the electric field-induced band gap in sliding bilayer graphene by using the density functional theory calculations. The electric field-induced band gap was found to be extremely sensitive to the electronic topological transition. At the electronic topological transition induced by layer sliding, four Dirac cones in the Ber...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 25 شماره
صفحات -
تاریخ انتشار 2009